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Abstract used as statement terminators; however, newlines within expres-
d sions are treated as whitespaces and ignored. In addition, some lan-
Quages have lexical elements that can include recursive syntactic
structures. For example, string literals in Ruby can contain arbi-
trary expressions.

These syntactic features cannot be handled easily using
family grammars, such as that used by JavaCC[1], or usiRg
based grammars, such as that used by Yacc[12] and many other
parser generators. The implementation of these features using tra-
rgi[itional LL- or LR-based parser generators requires many ad-hoc
approaches and complicates the parser descriptions, making parsers
difficult to maintain. Ruby’s grammar file, for example, exceeds
18,000 lines of code including a special stateful lexical analyzer that
can recursively invoke the parser.

In contrast, packrat parsers can handle complicated grammars
more easily than traditionalL and LR parsers. Furthermore,
packrat parsers can handle grammars easily in cases where con-
flicts occur in traditionalL L. and L R parsers, such as dangling-if-
else statements. Despite their power and flexibility, packrat parsers
guarantee linear time parsing. However, packrat parsers are space-
inefficient and require linear space in parsing for memoization rel-

Packrat parsing is a powerful parsing algorithm presented by For
in 2002. Packrat parsers can handle complicated grammars an
recursive structures in lexical elements more easily than the tra-
ditional LL(k) or LR(1) parsing algorithms. However, packrat
parsers requir€(n) space for memoization, whereis the length

of the input. This space inefficiency makes packrat parsers imprac-
tical in some applications. In our earlier work, we had proposed a
packrat parser generator that accepts grammars extendeduwvith
operators, which enable the generated parsers to reduce the amou
of storage required.

Experiments showed that parsers generated from
cut-inserted grammars can parse Java programs and subset XM
files in bounded space.

In this study, we propose methods to automatically insatt
operators into some practical grammars without changing the ac-
cepted languages. Our experimental evaluations indicated that us
ing our methods, packrat parsers can handle some practical gram
mars including the Java grammar in mostly constant space without
requiring any extra annotations.

Categories and Subject DescriptorsD.3.4 [Programming Lan- ative to input size.

guage¥ Processors—Parsing; F.4.Mgthematical Logic and In our earlier work[13], we proposed the additionaft oper-

Formal Languagegls Grammars and Other Rewriting Systems— ators to parsing expression grammars (PEGs)[9], on which pack-

Parsing rat parsing is based, to overcome its disadvantage. The concept of
. cut operators, which we borrowed from Prolog[6], enables gram-

General Terms Languages, Algorithms, Performance mar writers to control backtracking. By manually inserting op-

erators, memoization, backtracking, parser generator dynamically reclaim unnecessary space for memoization can be

generated. To evaluate the effectivenesswfoperators, we im-
1. Introduction plementeq a paqkrat parser generator ca“gdpthat acceptgut
) operators in addition to ordinary PEG notations. The experimental
Today, so-called scripting languages (e.g., Perl, PHP, Ruby, etc.)evaluations showed that the packrat parsers generated using gram-
are widely used in many systems such as Web applications. Themars withcut operators inserted can parse Java programs and sub-
grammars of these languages are typically more complicated thanset XML files in mostly constant space, unlike conventional packrat
those of traditional programming languages. For example, newlines parsers.
are used as statement terminators in Ruby, just like semicolons are  In this paper, we describe methods that achieve the same effect
in some practical grammars without manually insertngopera-
tors. In our methods, a parser generator statically analyzes a PEG
grammar to find the points at which the parser generator can insert
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on the first page. To copy otherwise, to republish, to post on servers or to redistribute jhtroduce the background of our work. We mainly focus on pars-
to lists, requires prior specific permission and/or a fee. . . ) .
ing expression grammars (PEGs) and packrat parsing, on which
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Copyright(® 2010 ACM 978-1-4503-0082-7/10/06. . . $10.00 our work is based. Then, we introduce the notiorcafoperators,



€ Empty string

"o String literal

[ ] Character class

. Wildcard (Any character)

(e) Grouping

N Nonterminal

el e Sequence

e1/ ez Ordered-choice

ex Zero-or-more repetition

&e And-predicate (Positive lookahead)
le Not-predicate (Negative lookahead)
e+ One-or-more repetition

e? Zero-or-more

Figure 1. Expressions Constituting a Parsing Expression

which was proposed in our earlier work, to overcome the disadvan-
tages of packrat parsing. We describe the motivation, definition,
properties, effectiveness, and problemsuafoperators. Then, we
describe methods for automatically inserticigt operators, which

is the main contribution of this paper. Then, we show the evaluation
results in terms of memory efficiency and parsing speed. Finally,
we conclude this paper and present future prospects.

2. Background
2.1 Parsing Expression Grammars (PEGS)

PEGs is a recognition-based formal syntactic foundation that was

first presented by Ford[9] to describe the syntax of formal lan-

guages. PEGs are a formalization of recursive descent parsing with

backtracking. A PEG consists of rules, representedvby— e,
whereN is a nonterminal symbol and an expression (called pars-
ing expression). A parsing expression consists of the following el-
ements, as shown in figure 1:

We do not considee+ in later sections because it can be
desugared te ex easily. Additionally, we distinguish from string
literal, which cannot be empty string in this paper for the brevity.
In the actual use of PEGs, the empty string literais allowed.

It appears that PEGs are similar to Extended Backus-Naur
Forms (EBNFs)[14]. However, it should be noted that/ e
is an ordered choicenotan unordered choicee; | e2 in EBNFs.
e1 / ez does not indicate strings expresseddayor e2. e1 / e
means an action in whiah is evaluated at first aneb is evaluated
only whene; fails. Therefore, generallg: / ea # e2 / ei.In
addition, it should be noteék is not similar to the operators used
in regular expressions (REs)}x does not mean a greedy match in
REs but a possessive match. For exampd¢!,« "a" in PEG does
not expresq"a", "aa", ...} but() because oncea"x succeeds,
the parser does not backtrack even if successive expressigns
do not succeedke and!e are lookahead expressions.succeeds
if e does not succeed an@ succeeds it succeeds. Note that
andg&e don’t change the position in an input of a parser even if the
expressions succeed.

PEGs can express all determinisfié(%) languages and some
non-context-free languages[9].

2.2 Packrat Parsing

parsing function must be pure in a packrat parser. That is, the same
parsing function called at the same position returns the same result.
This fact allows parsing functions to be memoized. Memoization of
all parsing functions in a packrat parser guarantees that the packrat
parser parses any input in linear time.

Despite the guarantee of linear time parsing, packrat parsing is
powerful. Packrat parsing can rapidly handle wide-ranged grammar
PEGs can express, including all determiniski®(k) languages
and some non-context-free languages. In addition, packrat parsing
does not require a separate lexer because when one of the choices
fails in parsing, a packrat parser can backtrack to the other choice,
unlike traditional LL or LR predictive parsers. Furthermore, be-
cause packrat parsers are simple, they can be implemented eas-
ily. Although packrat parsing is a simple, powerful, and linear-
time parsing algorithm, it has a major disadvantage in that pack-
rat parsers requir®(n) space for memoization in parsing because
they memoize all intermediate results. Because of this disadvan-
tage, packrat parsers are considered to be unsuitable for large file
parsing (e.g. XML streams)[8].

Rats[10], which generates packrat parsers in Java, supports sev-
eral optimizations to improve execution performance and memory
efficiency. For exampleRats!merges successive memoized fields
into objects calle¢hunksto decrease the heap size. &yunksand
many other optimizations, parsers generatedrlays! achieve an
execution performance comparable to that.éf parsers generated
by ANTLH15]. However,Rats!does not resolve the fundamental
problem that packrat parsers requidén) space.

Cut Operators

In this section, we descritmit operatorsCut operators, which are
conceptually borrowed from Prolog, were proposed in our earlier
work[13] to overcome the disadvantage that packrat parsers require
O(n) space in parsing. First, we illustrate the usageutbperators

by an example using a simple PEG. Then, we present an informal
definition of thecut operator. This description mainly concerns the
points at which acut operator can be inserted and the behavior
of a cut operator. Next, we discuss the propertiecuafoperators.

We describe how packrat parsers can remove unnecessary space for
memoization dynamically usingut operators. Then, we explain
the result of an experimental evaluationaift operators. Finally,

we describe the problems faced with the usewfoperators.

3.1 Motivation

We consider the following PEG expressing a programming lan-
guage’s control statements (rules about spacing, the definitions of
E andI are omitted):

S - nifn n(u E u)n S (Ilelsell S)'?
/ "while" n(u E n) " S
/ "print" n (n E ||) n S
/ "set"I"="E'";";.

When one of*if", "while", "print", Or "set" succeeds,
other choices never succeed. When one of these choices is being
evaluated, the packrat parser normally saves information for back-

Packrat parsing is a parsing algorithm that was first presented bytracking in preparation of failure. However, in this case, it is waste-
Ford[8]. Roughly speaking, packrat parsing is a combination of ful because after matching one of the keywords in a choice, it would
PEG-based recursive descent parsing with memorization. A packratnot be possible to succeed with other choices. In such a case, we
parser takes each nonterminal of a PEG as a parsing function ofwant the parser to avoid saving backtrack information.

the nonterminal and carries out parsing on an input by calling the By insertingcut operators {) as follows, grammar writers can
function. A parsing function takes a start position in an input as an instruct the parser to dispose of the backtrack information as soon
argument and returns a parse result, which is failure or success. Aas it becomes unnecessary:



— nifn T n(u E u)u S ("else" S)'?
/ "while" T n (n E n) " S h[
/ ”print" T " (n E u) n S

| set" "=t R ;v

The above PEG instructs the parser to not backtrack to the other

-
-—
-—
-
-
-—

choices when one of theif", "while", or "print" succeeds by
cut operators. Note that eut operator is meaningless in the last P 14 4 ’ 14 ? 4
choice because no further choices are left.

Another motivation for introducing cut operators is error- T + b + ,
reporting. In a backtracking parser, it is more difficult to report the a a y
exact point that the parser failed than a predictive parser because lo- ~
cal failure is recovered by backtracking and the point that the parser |(<f3>, () 01112131 413

failed at last is reported. Cut operators can improve readability of
error messages because cut operators suppress backtracking.

3.2 Definition

Cut operator is a O-arity operator and is renderedfaw ~ (in
ASCII). A cutoperator can be inserted in the following two cases.
First, you can insert autin the left-hand side of an ordered choice
e1 / e2. That is, an expression of the forea 1 e2 / es is a valid
expression. However, an expression of the fefrf ez 7 e3 is not
valid. Another place you can insertatis the body of a repetition
ex. That is, an expression of the for(e; 1 e2)* is a valid

Figure 2. Backtracking Stack and Memoization Table At

(<E1>,0). The first column indicates nonterminals, the last row
indicate positions in the input, and an element in the rowl’of
indicates characters constituting the input. Otherwise, an element
in the table is?, which indicates that it has not been parsed yet, or
i, which is the index of the rest.

expression. However, an expression of the fqemez)* 1 e3
is not allowed. M ? ? ? ? ? ?
The semantics of &ut operator are informally described as
follows: ) 9 9 [ 9 9
® e T €2 / es. /
1. e is evaluated. P ? / ? ? ? ? ?
2. If ey fails in 1., e3 is evaluated. Otherwise; is evaluated
andes is never evaluatedven ife; fails. Contrast this with T + b + a '
the case whereutis not inserted, in that caseg is evaluated
whene fails. 0 l 2 3 4 5

A cut operator can be considered to be similar to an if-
then-else statement in conventional programming languages
(if e1 thene, elsees).

* (e1 T e2)* Figure 3. Backtracking Stack and Memoization Table At
1. e; is evaluated. (<E2>,2).

2. If e fails in 1., the entire expression succeeds. Otherwise,
ez is evaluated.

3. If e, fails in 2., theentire expression failsOtherwise, the

parser goes back to 1. and repeats the evaluation. For the purpose of illustration, we consider a packrat parser's
state as a pair<g>, i) and a stack of pairs asX>,i), where<x>
indicates a point in a PEG andindicates a position (0-origin)
in a input string. The stack is used for backtracking. In addition,
we consider the space for memoization of the packrat parser as a

Because:x can be desugared t§ andN «— e N / ¢, where
N is a fresh nonterminale; T e2)= can also be desugared to
NandN «— e1 7 e2 N /¢;.

In other words, if an evaluator comes througbua operator, it table in which row indices are nonterminals, column indices are
does not backtrack to the other choice. positions, and elements are parse results. We ignore the call stack
) of nonterminals to simplify the explanation.
3.3 Properties For the inputa+b+a;, suppose that the parser start to parse

Existing packrat parsers memoize all intermediate results in prepa-the input fromM. At (<E1>, 0), the backtracking stack and the
ration for backtracking. Eliminating the possibility of backtracking Memoization table are as shown in Figure 2.

with cut operators, also enables a packrat parser to remove unnec- Figure 2 shows that the parser has to pusisg, 0) for back-
essary space for memoization. In this subsection, we describe howtracking beforeP "+" E is evaluated. Because the backtracking
a packrat parser can remove unnecessary space. As an example, w&ack is not empty and the position 0 is pushed to the stack, the
use the following PEG witltut operators, which expresses simple Parser cannot discard space for memoization at this point. However,

mathematical expressions: at (<E2>, 2), the backtracking stack and the memoization table are
as shown in Figure 3.
M — Em";m Figure 3 shows that the backtracking stack is empty at that point
E «— <E1>P"+" | <E2> E / <E3> P; by the evaluation of theut operator. Therefore, the parser would

P« nav /e never backtrack to a position before 2 in future and it can discard



the space for memoization that is indicated by the diagonal line in undecidable[9]. So, we will compute a more conservative approxi-
Figure 3. mation of Ins.

Generally, when the backtracking stack of a parser is empty at .
positionn, the parser can discard all regions in the memoization 4-1 Terminology
table whose column indices are less thanCut operators help a  Before describing our methods, we define the terminologies used
packrat parser to empty out its own backtracking stack because anin this section.
evaluation of ecut operator decreases the size of the backtracking . ) )
stack. Ifcutoperators are inserted appropriately in the definition of ~® cursor. The current position of a parser. dursoris the index
grammars, the packrat parser generated from the grammar would ~ Of input. Thecursormove to right with progress of parsing and
require only almost constant space for memoization. move to left with backtracking.

e (G: The set of all parsing expressions in a PEG.
e I(X), where X is a set of expression§eq,...,en}: It de-

3.4 Effectiveness

In our earlier work, we developed a packrat parser generater called ) W Lan npn
Yapp which involvescut-enhanced PEG, to evaluate the effective- P(c.).tf,.s '.(.511)..)/"'/ en). For example,!({"a", "b"}) denotes
ness of our idea. Our experimental evaluations are similar to those )

described in section 6. Evaluation result shows that the parsers gen- ® fail andnul [18]: fail is the set of expressions that may fail. For
erated from the grammars of Java and an XML subset PEG, both ~ €xample'a" € failands ¢ fail . nulis the set of expressions
with manually insertedut operators, require almost constant space  that may succeed without movirgrsor. For examples € nul
regardless of the input size in contrast with parsers generated from and "a" ¢ nul. The method for computingail and nul is
the grammars in whicleut operators are not inserted. The term omitted. In this paper, we assume that the judgements ef
"almost constant space” means that we have no problem with tak-  fail ande € nul may be conservative. Thatis,df ¢ fail, e
ing the memory consumption as constant space practically. Further- ~ never fails and it ¢ nul, e can only accept nonempty strings.
more, the parsers generated froot-inserted grammars achieved o 7 The set of nonempty terminal expressions. An expression
better execution throughput than those generated from the gram-  of the form"...",[...],or. € T.

mars withoutcut operators. .
P e [...]1 C [...]:Acharacter class includes another character

3.5 Problem class. For examplelab] C [abc].
We have now seen that appropriate useutfoperators can drasti- e [...1N[...]: Intersection of two character classes. For ex-
cally improve the memory efficiency of packrat parsers. However, ample,[ab] N [bel = [a] and [ab] N [cd] = [].

insertingcut operators by hand is tedious and error-prone process. o x ¢ [...]: a character is included in a character class. For
Careless grammar writers may unintentionally change the meaning  example,’a’ € [abc].
of grammars. Consider the following useaift operators:

s[i]: The ith character of string literak. ¢ is 0-origin. For

M — Ev";m example"ab"[0] is ’a’.

E « P"+' 1 E/P; ec; <es(er,ex € T): e isaprefixofes. e1 < ey =

P — T uan Ilbll; .

In the evaluation ofP, thecut operator befor¢a" is definitely true if sTe1) A SAea) A (e2
evaluated. As a resultib" in P is never evaluated an& ex- starts withe; )
presses onlya". Consequently) expresses onlya;", "a+a;", false if sTe1) A se2) A (e2 does not
"a+a+a;",... despite the grammar writer’s intention that it express start withe; )
"a", "b", "a+a", "atb", "b+a", "bb", ... Writing large, practi- false if sTe1) AcXez) Alen(er) > 1
cal grammars with correct and efficient usecaf operators is non- erf0] =a  ifser) AcAez) Alen(er) = 1A
trivial task, to say the least. It would be better to achieve the same s = [a] wherea is one character
effect without requiring the manual insertionaft operators. false if sTe1) A des)
i i es [0] cer |f C?(el) A S?(eg)

4. Automatic Insertion of Cut Operators e2 Cer  ifc?(er) Acez)
We propose two methods for automatic insertioowfoperators to false ifcTer) A d2ez)
resolve the abovementioned problems. In this section, we present a true if d?e1).
brief overview of these methods. First, we define the autoncatic where sPe) = true if e is a string literal, c@e) = true ife is a
insertion problem as the problem of defining function Ins which character class, and @) = true if e is a wildcard.

satisfies the following equations: i
ged ® ¢ <9 e2! e; maybeprefix ofes. e <7 e2 =

etea/es = e | ex/esifIns(eres/e3) exNez # [1 ifc?(er) Aces)
(e1e2)x = (e1 T e2)x ifIns((er e2)x). true if cqer) A de2)
To decide whether Irfg1 ez / es) or not, we must decide e1 < ez otherwise
whetherL(e:) N L(es) = 0 or not, whereL(e) represents a e Rx: The transitive and reflexive closure of relatiém
Lﬁgggfge that consists of all strings accepted by a parsing expres- * R(e), whereR is a relation ana is an expression: It means the

Whene; is .x, which accepts any string, the problem would be set of all expressions; that(e, e2) € R.
to decide whethef(e3) = () or not. Unfortunately, this problemis 4 5 Basic Ideas

I Note that the definitiorl.(e) doesn't require thaall of string must be Our basic ideas for automatizut insertion methods are simple.

matched toe but aprefix of string must be matched ta Its definition is First, at the choice; /e2 in parsing, if the prefix of input is ac-
same as Ford’s definition of Parsing Expression Language (PEL)[9]. cepted by only théirst terminal expressions ef;, information for



backtracking can be avoided after the evaluation of the first termi-
nal expressions af; failed. The idea is similar td.L(1) parsing.
For example, the following PEG

S« "if" .../ "while" ...;
can be translated to the following PEG:

S

Second, at the start of repetitian* in the expressiore; *
e, if the prefix of input is accepted by only the first terminal
expressions ok, information for backtracking can be avoided
after the evaluation of the first terminal expressions:pfailed
in the same manner. For example, the following PEG

!("while") 7 "if" .../ "while" ...;.

S — ||{|| ("if" .. / "while" .. ) * n}u;
can be translated to the following PEG:
S — u{n (!(u}u) T ("if" .. / "while" .. )) * u}u;_

However, an expressioA / B, whereA and B are nontermi-
nals that have ruled «— "a"andB < "b", respectively, cannot
be translated likewise because content of nonterminals are not ex-
panded when computirfLRST. To resolve this problems, we first
define another relatiobxtFirst as follows:

e1 € ExtFirst(e) iff

e = N(whereN is a nonterminal with a rul&y — e1)
e1 € First(e).

ExtFirst is the same aBirst except for the first line to obtain
the content of nonterminals. Then, we define relai@tFIRST as
follows:

ExtFIRST(e) ExtFirst* (e) N T.
Using the relatiorExtFIRST, if the following condition holds,

e1 € nul A ez & nul A disjoint(er,e2)

disjoint(e1,e2) =

Vt1 € EXtFIRST(El),tQ S EXtFIRST(EQ).
t1 Lo ta Nta Loty

then an expressior; / e, can be translated to the following

Note that lookahead by not-predicate is needed for the case thatexpression:

contents of choices and repetitions are organized into other rules.

4.3 AC-FIRST

In this subsection, we describe an automatitinsertion method
AC-FIRST. AC-FIRST uses the relatid@@IRST on G[18], which
was defined by Redziejowski and is inspired by the notion used
in predictive top-down parsers. In [18], the relatiBirst (not
FIRST) is defined as follows (The notation is changed from
Redziejowski's definition for lucidity):

e1 € First(e) iff

e1/e2 for somees

ez/e1 for somee; € fail
e1 e for somees

es e for somees € nul
!61

€e1%*

61?.

(e
e
e
e
e
e
e
e

Using the relatiorFirst, the relationFIRST is defined as fol-
lows:

FIRST(e) First x (e) N T.

Intuitively, FIRST(e) can be considered to be the set of terminal
expressions of which at least one must be evaluated afutsor
whene is evaluated. For example,

FIRST("if" ... ) {"if" "while"}.

Additionally, if the conditione ¢ nul holds,FIRST(e) can be
considered to be the set of terminal expressions of which at least
one mussucceedirst whene succeedsTherefore, If the following
condition holds,

/ "while" ..

e1 € nul A ea & nulA
Vt1 € FIRST(e1),t2 € FIRST(e2).t1 €7 ta Ato Lo t1

then an expressio#y / ez can be translated to

I(FIRST(e2)) 1 €1/ e2

without changing its meaning. Recall tHaX ), whereX is set of
expressionges, ..., e, }, means an expressidte; /.../ en).

I(ExtFIRST(e2)) T e1/ ea.

Note that our method may translate an expressioof which
evaluation may not terminate, to another, terminating one, i
nul A ExtFIRST(e) = (). Since such possible non-termination
should be a bug in the grammar, we do not consider this as a flaw
in our method.

4.4 AC-Repetition

Similar to the problem described in the previous subsection, we will
give the condition to translate an expresssion containing repetition
eixeato(lea 1 e1)* ex without changing its meaning, as follows:

e1 €nul A ea & nul A\ disjoint(er, ez).

We useExtFIRST to obtain the first terminal expressionseaf
Using ExtFIRST, an expressior; * ez in which the above con-
dition holds can be translated to the following expression without
changing its meaning:

((ExtFIRST(e2)) T e1) * ea.

However, if there are no expressions following the repetition,
the translation is not applicable.

To resolve this problem and translate repetitianat the tail
position, the followere, of the last non-tail invoker o« must be
found. First, we define the relatidmvoker as follows:

e1 € Invoker(e) iff

e1 = efes

e1 = ezxfe

€1 = € €2

€1 = €2 €

er = le

€1 = e*

er = e?

e1r = N(whereN is a nonterminal with a rule

N — e).

The last line in the above means that theroker(e) for an ex-
pressiore may have several elements. Then, we define the follow-
ing function H such thatH (e) represents the follower expressions
of e (c indicates the child ot andV indicates visited nontermi-
nals):



H(e) = J(e,e,0)U...J(en,e,0)
J(ex,c, V) = 0
J(e?, e, V) = 0
J(le,c, V) = 0
J(&e?, ¢, V) = 0
Je:" " V) = J(ei,e,V)U ... J(en,e,V)
Je:[1,¢V) = J(e,e,V)U ... J(en,e, V)
J(e:.,cV) = J(er,e,V)U ... J(en,e,V)
Je:N,e,V)(NeV) = 0
J(e:N,e,V) = J(ei,e, VU{N})

U... J(en,e, VU{N})
J(e: eqep,ep, V) = J(e,e,V)U ... J(en,e, V)
J(e: eqep,eq,V) = {e}
J(e:eq /ep,€a,V) = 0
J(e:ea/ev,ep, V) = J(e,e,V)U ... J(en,e, V),
whereeq, ...,e, € Invoker(e).

For the expressioa x and the seX = H(e1%), if size(X)
1 and the following condition holds,

e1 € nul N ea & nul A
disjoint(e1,e2) (X = {e2})
then the expressios « can be translated to:

(/(ExtFIRST(e2)) T e1)x*;.

The relationInvoker and the functionH to find the follower
expressions of are similar to the relatiobastss andFOLLOW; in
[18], respectively, but not the same as them.

For exampleFOLLOW, (e) # H (e) where(e/e1) ea.

Additionally, we add the special translation rule to handle the
case that, =!. whereX = {e2}. This pattern appears frequently
in PEGs and the abovementioned translation rule cannot handle thi
pattern. The translation rule enable that the expressiefollowed
by !. to be translated t¢&(.) T e1)=*.

4.5 Limitations

Because AC-FIRST and AC-Repetition, li{el. (1) parsing, per-
form lookahead of only one terminal expression, these algorithms
have limitation similar to it. That is, if the first terminal expressions

The key concept is that when < e, we can safely replace
(ex / e2) orl(ez / e1) with !(e1). Hence, ife; < ej, e; can be
removed from the lookahead expressién. /e, / ... /e; / ...).
In addition, ife; < e;, e; is removed from it. Using this method,

we can compact the expressitffia-z] / "synchronized") to
I([a-z]).

4.7 Suppressing Excess Insertion of Cut Operators

Using our methods, unnecessamyt operators are occasionally
inserted. Specifically, inserting @t operator into an expression
that expresses only fixed-size strings is always unnecessary. An
expression that expresses only fixed-sized strings can be detected
using the following functior¥™:

F(ei/e2, V) = F(ei, V)AF(e2, V)

F(el 62, V) = F‘(617 V) A F(EQ, V)

F(ex, V) = false

F(e?, V) = false

F(&e,V) = F(e, V)

F(le, V) = Fle, V)

F(N,V)if(NeV) = false

F(N, V) = F(e, VU{N})whereN — ¢
F(e)if(eeT) true

The first line says that; / e2 expresses only fixed-size strings
if both e; andes express only fixed-size strings. The other lines can
be interpreted in the same manner. Note #haivhich is the second
argument ofF’, represents visited nonterminalé.is used to detect
a recursive expression. F(e) is true, it is wasteful to insertut
operators inte and such an insertion should be avoided.

5. Comparison with Related Work

Sin this section, we compare our methods with two related works.

One isRats[10], a packrat parser generator which generates Java
code. The other i#ousg19], a PEG parser generator which also
generates Java code.

Rats! implements several optimizations to improve execution
performance and memory efficiency. However, despite these opti-
mizations, parsers generated Rgts!requireO(n) space in pars-
ing because of memoization. On the other hand, parsers generated

of a choice can be prefix of the first terminals of another choice, py'yappusing our methods can parse an input in mostly constant
these algorithms cannot insert a cut operator into the PEG. For ex-gpace for memoization. Because our methods are orthogonal to
ample, in the following PEG, a cut operator cannot be inserted after ose optimizations exploited Rats} we can combine the use of
":" because lookahead of arbitrary terminal expressions is needed oyr methods and the optimizations to improve the memory effi-
ciency. In fact, we could easily impleme@hunksoptimization in
Yapp It should also be possible to implement our methoRats!
. . Mouseis a PEG parser generator. Instead of memoizing all
4.6 Compaction of Lookahead Expressions intermediate results, parsers generatedMiuse have a small,
Lookahead expressions generated by AC-FIRST and AC-Repetitionfixed-size cache. Therefor&Jousedoes not required(n) space
sometimes become quite large. For example, the Variablelnitializer for memoization. But at the same timglousedoes not guaran-
rule in Java PEG tee linear-time parsing. Our method requires only almost constant
space for memoization without sacrificing time linearity.

A — [a-zl+":" .../ [a-z]+";";

Variablelnitializer « Arraylnitializer
/  Expression
is translated to the following rule using AC-FIRST:

6. Evaluation

For the evaluation of our methods, First, we implemented our
methods as a modification of our parser generdtpp Yappis
written in Java and generates packrat parsers in Java. Then, we
; ; " generated optimized parsers usivapp To evaluate our methods,

/ "synchronized" /...) 1 we compared the following parsers that don’t construct abstract

. Arraylnmgllzer/ Expression _ syntax trees (i.e. recognizers) in terms of heap size and execution
The right-hand side of the above rule is unnecessarily large performance:

because the lookahead expressipte-z] / "synchronized")
has the same meaning d$a-z]). We implemented a method for
the compaction of a lookahead expression to solve this problem.

Variablelnitializer — !(
[0-91 / [1-9]1 / [A-Z]1 / [_$] / [a-=]

e AUTO: generated byappfrom grammars in whiclsutoperators
are insertecutomaticallyusing our methods.
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Figure 4. Minimum heap size in parsing Java programs

Figure 5. Minimum heap size in parsing XML files
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languages which sizes could be large in practice. We created Java 50
1.4 PEG from a Parsing Expression Grammar for Java 1.5[16], 0 P N JES—— N #
XML PEG from the EBNF definition in Extensible Markup Lan- 0 500 1000 1500 2000 2500
guage (XML) 1.0 (Fourth Edition)[5], and JSON PEG from the File Size (KiB)
grammar on Annex A.8 of ECMA-262 (Fifth Edition) [11]. We se- -
lected 9 files with size greater than 100 KiB as inputs to the Java I INO-CUT XAUTO ACUT RATS I

1.4 parsers from Java programs generated from the repository of

JavaCC grammars[3], and 38 files as inputs to the XML parsers,
each having a size less than 2 MiB, from IJS-ELAN corpus Version
2.0[7]. And we selected 38 files that we translated the 1JS-ELAN
corpus XML files to JSON files using JSON in Java library[2] as
inputs to the JSON parsers.

All evaluations are performed on Intel Core2 Duo 2.4GHz with
2GB RAM running JDK 1.6.0 (client VM) on Windows XP Pro-
fessional.

6.1 Heap Size

To measure the heap size used in parsing inputs, we usedike
command line option, which sets the initial Java heap size, and the
-Xmx command line option, which sets the maximum Java heap
size. We carried out a binary search to determine the minimum
heap size for which the parser can parse an input file without
OutOfMemoryError. The results are shown in figure 4, 5, and 6.
Figure 4 and 6 show thauT0 andCUT can parse Java programs

and JSON texts in mostly constant space regardless of the input

size, in contrast t&i0-CUT andRATS. The slight increase of heap
sizes ofAUTO andCUT in Java when the file size is 644 KiB is that
there exists one large Java statement in the filecabhdperators are
not sufficiently inserted for such a statement. We can say that our
methods are effective for the Java PEG and the JSON PEG from
the result.

But in figure 5,AUTO exhibits almost the same memory con-
sumption asi0-CUT and performs differently fronrGUT. An obser-
vation of the XML PEG suggests that there exists saueoper-

2We used Javd .4 parser distributed wittRats! for RATS, because the
grammar may be optimized fétats!

Figure 6. Minimum heap size in parsing JSON files

ator instances which cannot be inserted automatically but can be
inserted manually for the reason described in section 4.5.

6.2 Speed

To measure how the speeds of the parsers change with the heap size,
we again used the<msand-Xms We measured the time in which
parsers parse all input files successfully, repeated the evaluation 20
times, and selected the median as a result. The results are shown in
figure 7, 8, and 9.

Figure 7 and 9 show that the speedsAuf0 andCUT in pars-
ing Java programs and JSON texts are improved significantly as
compared tal0-CUT. AUTO performs almost as good a8T. That
is, our methods do a fairly good job as compared to the manual
insertion ofcut operators.

In addition, figure 7 indicates that in JawdiTO and CUT are
faster tharRATS in a small heap size and figure 9 indicates that in
JSONAUTO and CUT are far more faster thaRATS. Supposedly,
this result is due to a decrease in time for garbage collections.
Unfortunately, as shown in figure &8UT0 performes mostly the
same adl0-CUT for XML for the same reason as the case of figure
5.

7. Conclusions

We proposed methods for automatic insertioncot operators
into a PEG. Using our methods, we can generate packrat parsers
that require only almost constant space for memoization without
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Figure 9. Speed for parsing JSON files.

manual rewriting of the grammar. Packrat parsers are considered
unsuitable for parsing large inputs. However, using our methods,
packrat parsers can handle large files practically. This is the main
contribution of our study. Experimental evaluations suggest that
our methods are effective for a Java PEG and a JSON PEG but
are unfortunately ineffective for an XML PEG. We believe that this
problem can be solved by some extensions to our methods (e.g.
increasing the number of lookahead nonterminal expressions like
LL(k)). We intend to address the problem in future work.
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