
Packrat Parsers Can Handle Practical
Grammars in Mostly Constant Space

Kota Mizushima
Graduate School of Systems and

Information Engineering, University of
Tsukuba, Tennodai 1-1-1 Tsukuba,

Ibaraki, JAPAN
mizusima@

ialab.cs.tsukuba.ac.jp

Atusi Maeda
Graduate School of Systems and

Information Engineering, University of
Tsukuba, Tennodai 1-1-1 Tsukuba,

Ibaraki, JAPAN
maeda@cs.tsukuba.ac.jp

Yoshinori Yamaguchi
Graduate School of Systems and

Information Engineering, University of
Tsukuba, Tennodai 1-1-1 Tsukuba,

Ibaraki, JAPAN
yamaguti@cs.tsukuba.ac.jp

Abstract
Packrat parsing is a powerful parsing algorithm presented by Ford
in 2002. Packrat parsers can handle complicated grammars and
recursive structures in lexical elements more easily than the tra-
ditional LL(k) or LR(1) parsing algorithms. However, packrat
parsers requireO(n) space for memoization, wheren is the length
of the input. This space inefficiency makes packrat parsers imprac-
tical in some applications. In our earlier work, we had proposed a
packrat parser generator that accepts grammars extended withcut
operators, which enable the generated parsers to reduce the amount
of storage required.

Experiments showed that parsers generated from
cut-inserted grammars can parse Java programs and subset XML
files in bounded space.

In this study, we propose methods to automatically insertcut
operators into some practical grammars without changing the ac-
cepted languages. Our experimental evaluations indicated that us-
ing our methods, packrat parsers can handle some practical gram-
mars including the Java grammar in mostly constant space without
requiring any extra annotations.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Parsing; F.4.2 [Mathematical Logic and
Formal Languages]: Grammars and Other Rewriting Systems—
Parsing

General Terms Languages, Algorithms, Performance

Keywords parsing expression grammars, packrat parsing, cut op-
erators, memoization, backtracking, parser generator

1. Introduction
Today, so-called scripting languages (e.g., Perl, PHP, Ruby, etc.)
are widely used in many systems such as Web applications. The
grammars of these languages are typically more complicated than
those of traditional programming languages. For example, newlines
are used as statement terminators in Ruby, just like semicolons are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’10, June 5–6, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0082-7/10/06. . . $10.00

used as statement terminators; however, newlines within expres-
sions are treated as whitespaces and ignored. In addition, some lan-
guages have lexical elements that can include recursive syntactic
structures. For example, string literals in Ruby can contain arbi-
trary expressions.

These syntactic features cannot be handled easily usingLL-
family grammars, such as that used by JavaCC[1], or usingLR-
based grammars, such as that used by Yacc[12] and many other
parser generators. The implementation of these features using tra-
ditional LL- or LR-based parser generators requires many ad-hoc
approaches and complicates the parser descriptions, making parsers
difficult to maintain. Ruby’s grammar file, for example, exceeds
8,000 lines of code including a special stateful lexical analyzer that
can recursively invoke the parser.

In contrast, packrat parsers can handle complicated grammars
more easily than traditionalLL and LR parsers. Furthermore,
packrat parsers can handle grammars easily in cases where con-
flicts occur in traditionalLL andLR parsers, such as dangling-if-
else statements. Despite their power and flexibility, packrat parsers
guarantee linear time parsing. However, packrat parsers are space-
inefficient and require linear space in parsing for memoization rel-
ative to input size.

In our earlier work[13], we proposed the addition ofcut oper-
ators to parsing expression grammars (PEGs)[9], on which pack-
rat parsing is based, to overcome its disadvantage. The concept of
cut operators, which we borrowed from Prolog[6], enables gram-
mar writers to control backtracking. By manually insertingcut op-
erators into a PEG grammar, an efficient packrat parser that can
dynamically reclaim unnecessary space for memoization can be
generated. To evaluate the effectiveness ofcut operators, we im-
plemented a packrat parser generator calledYappthat acceptscut
operators in addition to ordinary PEG notations. The experimental
evaluations showed that the packrat parsers generated using gram-
mars withcut operators inserted can parse Java programs and sub-
set XML files in mostly constant space, unlike conventional packrat
parsers.

In this paper, we describe methods that achieve the same effect
in some practical grammars without manually insertingcut opera-
tors. In our methods, a parser generator statically analyzes a PEG
grammar to find the points at which the parser generator can insert
cut operators without changing the meaning of the grammar and
then insertscut operators at these points.

The remainder of this paper is organized as follows. First, we
introduce the background of our work. We mainly focus on pars-
ing expression grammars (PEGs) and packrat parsing, on which
our work is based. Then, we introduce the notion ofcut operators,

ε : Empty string
" " : String literal
[] : Character class
. : Wildcard (Any character)
(e) : Grouping
N : Nonterminal
e1 e2 : Sequence
e1 / e2 : Ordered-choice
e∗ : Zero-or-more repetition
&e : And-predicate (Positive lookahead)
!e : Not-predicate (Negative lookahead)
e+ : One-or-more repetition
e? : Zero-or-more.

Figure 1. Expressions Constituting a Parsing Expression

which was proposed in our earlier work, to overcome the disadvan-
tages of packrat parsing. We describe the motivation, definition,
properties, effectiveness, and problems ofcut operators. Then, we
describe methods for automatically insertingcut operators, which
is the main contribution of this paper. Then, we show the evaluation
results in terms of memory efficiency and parsing speed. Finally,
we conclude this paper and present future prospects.

2. Background
2.1 Parsing Expression Grammars (PEGs)

PEGs is a recognition-based formal syntactic foundation that was
first presented by Ford[9] to describe the syntax of formal lan-
guages. PEGs are a formalization of recursive descent parsing with
backtracking. A PEG consists of rules, represented byN ← e,
whereN is a nonterminal symbol ande, an expression (called pars-
ing expression). A parsing expression consists of the following el-
ements, as shown in figure 1:

We do not considere+ in later sections because it can be
desugared toe e∗ easily. Additionally, we distinguishε from string
literal, which cannot be empty string in this paper for the brevity.
In the actual use of PEGs, the empty string literal"" is allowed.

It appears that PEGs are similar to Extended Backus-Naur
Forms (EBNFs)[14]. However, it should be noted thate1 / e2

is an ordered choice, not an unordered choice, e1 | e2 in EBNFs.
e1 / e2 does not indicate strings expressed bye1 or e2. e1 / e2

means an action in whiche1 is evaluated at first ande2 is evaluated
only whene1 fails. Therefore, generally,e1 / e2 6= e2 / e1. In
addition, it should be notede∗ is not similar to the operators used
in regular expressions (REs).e∗ does not mean a greedy match in
REs but a possessive match. For example,"a" ∗ "a" in PEG does
not express{"a", "aa", ...} but ∅ because once"a"∗ succeeds,
the parser does not backtrack even if successive expressions"a"
do not succeed.&e and !e are lookahead expressions.!e succeeds
if e does not succeed and&e succeeds ife succeeds. Note that!e
and&e don’t change the position in an input of a parser even if the
expressions succeed.

PEGs can express all deterministicLR(k) languages and some
non-context-free languages[9].

2.2 Packrat Parsing

Packrat parsing is a parsing algorithm that was first presented by
Ford[8]. Roughly speaking, packrat parsing is a combination of
PEG-based recursive descent parsing with memorization. A packrat
parser takes each nonterminal of a PEG as a parsing function of
the nonterminal and carries out parsing on an input by calling the
function. A parsing function takes a start position in an input as an
argument and returns a parse result, which is failure or success. A

parsing function must be pure in a packrat parser. That is, the same
parsing function called at the same position returns the same result.
This fact allows parsing functions to be memoized. Memoization of
all parsing functions in a packrat parser guarantees that the packrat
parser parses any input in linear time.

Despite the guarantee of linear time parsing, packrat parsing is
powerful. Packrat parsing can rapidly handle wide-ranged grammar
PEGs can express, including all deterministicLR(k) languages
and some non-context-free languages. In addition, packrat parsing
does not require a separate lexer because when one of the choices
fails in parsing, a packrat parser can backtrack to the other choice,
unlike traditionalLL or LR predictive parsers. Furthermore, be-
cause packrat parsers are simple, they can be implemented eas-
ily. Although packrat parsing is a simple, powerful, and linear-
time parsing algorithm, it has a major disadvantage in that pack-
rat parsers requireO(n) space for memoization in parsing because
they memoize all intermediate results. Because of this disadvan-
tage, packrat parsers are considered to be unsuitable for large file
parsing (e.g. XML streams)[8].

Rats![10], which generates packrat parsers in Java, supports sev-
eral optimizations to improve execution performance and memory
efficiency. For example,Rats!merges successive memoized fields
into objects calledchunksto decrease the heap size. Bychunksand
many other optimizations, parsers generated byRats! achieve an
execution performance comparable to that ofLL parsers generated
by ANTLR[15]. However,Rats!does not resolve the fundamental
problem that packrat parsers requireO(n) space.

3. Cut Operators
In this section, we describecut operators.Cut operators, which are
conceptually borrowed from Prolog, were proposed in our earlier
work[13] to overcome the disadvantage that packrat parsers require
O(n) space in parsing. First, we illustrate the usage ofcutoperators
by an example using a simple PEG. Then, we present an informal
definition of thecut operator. This description mainly concerns the
points at which acut operator can be inserted and the behavior
of a cut operator. Next, we discuss the properties ofcut operators.
We describe how packrat parsers can remove unnecessary space for
memoization dynamically usingcut operators. Then, we explain
the result of an experimental evaluation ofcut operators. Finally,
we describe the problems faced with the use ofcut operators.

3.1 Motivation

We consider the following PEG expressing a programming lan-
guage’s control statements (rules about spacing, the definitions of
E andI are omitted):

S ← "if" "(" E ")" S ("else" S)?
/ "while" "(" E ")" S
/ "print" "(" E ")" S
/ "set" I "=" E ";"; .

When one of"if", "while", "print", or "set" succeeds,
other choices never succeed. When one of these choices is being
evaluated, the packrat parser normally saves information for back-
tracking in preparation of failure. However, in this case, it is waste-
ful because after matching one of the keywords in a choice, it would
not be possible to succeed with other choices. In such a case, we
want the parser to avoid saving backtrack information.

By insertingcut operators (↑) as follows, grammar writers can
instruct the parser to dispose of the backtrack information as soon
as it becomes unnecessary:

S ← "if" ↑ "(" E ")" S ("else" S)?
/ "while" ↑ "(" E ")" S
/ "print" ↑ "(" E ")" S
/ "set" I "=" E ";"; .

The above PEG instructs the parser to not backtrack to the other
choices when one of the"if", "while", or "print" succeeds by
cut operators. Note that acut operator is meaningless in the last
choice because no further choices are left.

Another motivation for introducing cut operators is error-
reporting. In a backtracking parser, it is more difficult to report the
exact point that the parser failed than a predictive parser because lo-
cal failure is recovered by backtracking and the point that the parser
failed at last is reported. Cut operators can improve readability of
error messages because cut operators suppress backtracking.

3.2 Definition

Cut operator is a 0-arity operator and is rendered as↑ or ^ (in
ASCII). A cut operator can be inserted in the following two cases.
First, you can insert acut in the left-hand side of an ordered choice
e1 / e2. That is, an expression of the forme1 ↑ e2 / e3 is a valid
expression. However, an expression of the forme1 / e2 ↑ e3 is not
valid. Another place you can insert acut is the body of a repetition
e∗. That is, an expression of the form(e1 ↑ e2)∗ is a valid
expression. However, an expression of the form(e1 e2)∗ ↑ e3

is not allowed.
The semantics of acut operator are informally described as

follows:

• e1 ↑ e2 / e3:

1. e1 is evaluated.

2. If e1 fails in 1.,e3 is evaluated. Otherwise,e2 is evaluated
ande3 is never evaluatedeven ife2 fails. Contrast this with
the case wherecut is not inserted, in that casee3 is evaluated
whene2 fails.

A cut operator can be considered to be similar to an if-
then-else statement in conventional programming languages
(if e1 thene2 elsee3).

• (e1 ↑ e2)∗:
1. e1 is evaluated.

2. If e1 fails in 1., the entire expression succeeds. Otherwise,
e2 is evaluated.

3. If e2 fails in 2., theentire expression fails. Otherwise, the
parser goes back to 1. and repeats the evaluation.

Becausee∗ can be desugared toN andN ← e N / ε, where
N is a fresh nonterminal,(e1 ↑ e2)∗ can also be desugared to
N andN ← e1 ↑ e2 N / ε;.

In other words, if an evaluator comes through acut operator, it
does not backtrack to the other choice.

3.3 Properties

Existing packrat parsers memoize all intermediate results in prepa-
ration for backtracking. Eliminating the possibility of backtracking
with cut operators, also enables a packrat parser to remove unnec-
essary space for memoization. In this subsection, we describe how
a packrat parser can remove unnecessary space. As an example, we
use the following PEG withcut operators, which expresses simple
mathematical expressions:

M ← E ";";
E ← <E1> P "+" ↑ <E2> E / <E3> P ;
P ← "a" / "b"; .

Figure 2. Backtracking Stack and Memoization Table At
(<E1>,0). The first column indicates nonterminals, the last row
indicate positions in the input, and an element in the row ofT
indicates characters constituting the input. Otherwise, an element
in the table is?, which indicates that it has not been parsed yet, or
i, which is the index of the rest.

Figure 3. Backtracking Stack and Memoization Table At
(<E2>,2).

For the purpose of illustration, we consider a packrat parser’s
state as a pair (<X>, i) and a stack of pairs as (<X>,i), where<X>
indicates a point in a PEG andi indicates a position (0-origin)
in a input string. The stack is used for backtracking. In addition,
we consider the space for memoization of the packrat parser as a
table in which row indices are nonterminals, column indices are
positions, and elements are parse results. We ignore the call stack
of nonterminals to simplify the explanation.

For the inputa+b+a;, suppose that the parser start to parse
the input fromM . At (<E1>, 0), the backtracking stack and the
memoization table are as shown in Figure 2.

Figure 2 shows that the parser has to push (<E3>, 0) for back-
tracking beforeP "+" E is evaluated. Because the backtracking
stack is not empty and the position 0 is pushed to the stack, the
parser cannot discard space for memoization at this point. However,
at (<E2>, 2), the backtracking stack and the memoization table are
as shown in Figure 3.

Figure 3 shows that the backtracking stack is empty at that point
by the evaluation of thecut operator. Therefore, the parser would
never backtrack to a position before 2 in future and it can discard

the space for memoization that is indicated by the diagonal line in
Figure 3.

Generally, when the backtracking stack of a parser is empty at
positionn, the parser can discard all regions in the memoization
table whose column indices are less thann. Cut operators help a
packrat parser to empty out its own backtracking stack because an
evaluation of acut operator decreases the size of the backtracking
stack. Ifcut operators are inserted appropriately in the definition of
grammars, the packrat parser generated from the grammar would
require only almost constant space for memoization.

3.4 Effectiveness

In our earlier work, we developed a packrat parser generater called
Yapp, which involvescut-enhanced PEG, to evaluate the effective-
ness of our idea. Our experimental evaluations are similar to those
described in section 6. Evaluation result shows that the parsers gen-
erated from the grammars of Java and an XML subset PEG, both
with manually insertedcutoperators, require almost constant space
regardless of the input size in contrast with parsers generated from
the grammars in whichcut operators are not inserted. The term
”almost constant space” means that we have no problem with tak-
ing the memory consumption as constant space practically. Further-
more, the parsers generated fromcut-inserted grammars achieved
better execution throughput than those generated from the gram-
mars withoutcut operators.

3.5 Problem

We have now seen that appropriate use ofcut operators can drasti-
cally improve the memory efficiency of packrat parsers. However,
insertingcut operators by hand is tedious and error-prone process.
Careless grammar writers may unintentionally change the meaning
of grammars. Consider the following use ofcut operators:

M ← E ";";
E ← P "+" ↑ E / P ;
P ← ↑ "a" / "b"; .

In the evaluation ofP , thecut operator before"a" is definitely
evaluated. As a result,"b" in P is never evaluated andP ex-
presses only"a". Consequently,M expresses only"a;", "a+a;",
"a+a+a;",... despite the grammar writer’s intention that it express
"a", "b", "a+a", "a+b", "b+a", "b+b", Writing large, practi-
cal grammars with correct and efficient use ofcut operators is non-
trivial task, to say the least. It would be better to achieve the same
effect without requiring the manual insertion ofcut operators.

4. Automatic Insertion of Cut Operators
We propose two methods for automatic insertion ofcutoperators to
resolve the abovementioned problems. In this section, we present a
brief overview of these methods. First, we define the automaticcut
insertion problem as the problem of defining function Ins which
satisfies the following equations:

e1 e2 / e3 = e1 ↑ e2 / e3 if Ins(e1 e2 / e3)
(e1 e2)∗ = (e1 ↑ e2) ∗ if Ins((e1 e2)∗).

To decide whether Ins(e1 e2 / e3) or not, we must decide
whetherL(e1) ∩ L(e3) = ∅ or not, whereL(e) represents a
language that consists of all strings accepted by a parsing expres-
sione1.

Whene1 is .∗, which accepts any string, the problem would be
to decide whetherL(e3) = ∅ or not. Unfortunately, this problem is

1 Note that the definitionL(e) doesn’t require thatall of string must be
matched toe but aprefix of string must be matched toe. Its definition is
same as Ford’s definition of Parsing Expression Language (PEL)[9].

undecidable[9]. So, we will compute a more conservative approxi-
mation of Ins.

4.1 Terminology

Before describing our methods, we define the terminologies used
in this section.

• cursor: The current position of a parser. Acursor is the index
of input. Thecursormove to right with progress of parsing and
move to left with backtracking.

• G: The set of all parsing expressions in a PEG.

• !(X), where X is a set of expressions{e1, ..., en}: It de-
notes !(e1 /.../ en). For example,!({"a", "b"}) denotes
!("a" / "b").

• fail andnul [18]: fail is the set of expressions that may fail. For
example,"a" ∈ fail andε 6∈ fail . nul is the set of expressions
that may succeed without movingcursor. For example,ε ∈ nul
and "a" 6∈ nul. The method for computingfail and nul is
omitted. In this paper, we assume that the judgements ofe ∈
fail ande ∈ nul may be conservative. That is, ife 6∈ fail, e
never fails and ife 6∈ nul, e can only accept nonempty strings.

• T : The set of nonempty terminal expressions. An expressione
of the form" . . . ",[. . .], or . ∈ T .

• [. . .] ⊂ [. . .]: A character class includes another character
class. For example,[ab] ⊂ [abc].

• [. . .] ∩ [. . .]: Intersection of two character classes. For ex-
ample,[ab] ∩ [bc] = [a] and[ab] ∩ [cd] = [].

• x ∈ [. . .]: a character is included in a character class. For
example,’a’ ∈ [abc].

• s[i]: The ith character of string literals. i is 0-origin. For
example,"ab"[0] is ’a’.

• e1 ≤ e2 (e1, e2 ∈ T): e1 is a prefix ofe2. e1 ≤ e2 =8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

true if s?(e1) ∧ s?(e2) ∧ (e2

starts withe1)
false if s?(e1) ∧ s?(e2) ∧ (e2 does not

start withe1)
false if s?(e1) ∧ c?(e2) ∧ len(e1) > 1
e1[0] = a if s?(e1) ∧ c?(e2) ∧ len(e1) = 1∧

e2 = [a] wherea is one character
false if s?(e1) ∧ d?(e2)
e2[0] ∈ e1 if c?(e1) ∧ s?(e2)
e2 ⊂ e1 if c?(e1) ∧ c?(e2)
false if c?(e1) ∧ d?(e2)
true if d?(e1).

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

where s?(e) = true if e is a string literal, c?(e) = true if e is a
character class, and d?(e) = true if e is a wildcard.

• e1 ≤? e2: e1 maybeprefix ofe2. e1 ≤? e2 =8
<
:

e1 ∩ e2 6= [] if c?(e1) ∧ c?(e2)
true if c?(e1) ∧ d?(e2)
e1 ≤ e2 otherwise.

9
=
;

• R∗: The transitive and reflexive closure of relationR.

• R(e), whereR is a relation ande is an expression: It means the
set of all expressionse2 that(e, e2) ∈ R.

4.2 Basic Ideas

Our basic ideas for automaticcut insertion methods are simple.
First, at the choicee1/e2 in parsing, if the prefix of input is ac-
cepted by only thefirst terminal expressions ofe1, information for

backtracking can be avoided after the evaluation of the first termi-
nal expressions ofe2 failed. The idea is similar toLL(1) parsing.
For example, the following PEG

S ← "if" ... / "while" ...;

can be translated to the following PEG:

S ← !("while") ↑ "if" ... / "while" ...; .

Second, at the start of repetitione1∗ in the expressione1 ∗
e2, if the prefix of input is accepted by only the first terminal
expressions ofe1, information for backtracking can be avoided
after the evaluation of the first terminal expressions ofe2 failed
in the same manner. For example, the following PEG

S ← "{" ("if" ... / "while" ...) ∗ "}";

can be translated to the following PEG:

S ← "{" (!("}") ↑ ("if" ... / "while" ...)) ∗ "}"; .

Note that lookahead by not-predicate is needed for the case that
contents of choices and repetitions are organized into other rules.

4.3 AC-FIRST

In this subsection, we describe an automaticcut insertion method
AC-FIRST. AC-FIRST uses the relationFIRST on G[18], which
was defined by Redziejowski and is inspired by the notion used
in predictive top-down parsers. In [18], the relationFirst (not
FIRST) is defined as follows (The notation is changed from
Redziejowski’s definition for lucidity):

e1 ∈ First(e) iff

e = e1/e2 for somee2

e = e2/e1 for somee2 ∈ fail
e = e1 e2 for somee2

e = e2 e1 for somee2 ∈ nul
e = !e1

e = e1∗
e = e1?.

Using the relationFirst, the relationFIRST is defined as fol-
lows:

FIRST(e) = First ∗ (e) ∩ T.

Intuitively, FIRST(e) can be considered to be the set of terminal
expressions of which at least one must be evaluated at thecursor
whene is evaluated. For example,

FIRST("if" ... / "while" ...) = {"if", "while"}.
Additionally, if the conditione 6∈ nul holds,FIRST(e) can be

considered to be the set of terminal expressions of which at least
one mustsucceedfirst whene succeeds. Therefore, If the following
condition holds,

e1 6∈ nul ∧ e2 6∈ nul∧
∀t1 ∈ FIRST(e1), t2 ∈ FIRST(e2).t1 6≤? t2 ∧ t2 6≤? t1

then an expressione1 / e2 can be translated to

!(FIRST(e2)) ↑ e1 / e2

without changing its meaning. Recall that!(X), whereX is set of
expressions{e1, ..., en}, means an expression!(e1 /.../ en).

However, an expressionA / B, whereA andB are nontermi-
nals that have rulesA ← "a" andB ← "b", respectively, cannot
be translated likewise because content of nonterminals are not ex-
panded when computingFIRST. To resolve this problems, we first
define another relationExtFirst as follows:

e1 ∈ ExtFirst(e) iff

e = N(whereN is a nonterminal with a ruleN ← e1)
e1 ∈ First(e).

ExtFirst is the same asFirst except for the first line to obtain
the content of nonterminals. Then, we define relationExtFIRST as
follows:

ExtFIRST(e) = ExtFirst ∗ (e) ∩ T.

Using the relationExtFIRST, if the following condition holds,

e1 6∈ nul ∧ e2 6∈ nul ∧ disjoint(e1, e2)
disjoint(e1, e2) =
∀t1 ∈ ExtFIRST(e1), t2 ∈ ExtFIRST(e2).
t1 6≤? t2 ∧ t2 6≤? t1

then an expressione1 / e2 can be translated to the following
expression:

!(ExtFIRST(e2)) ↑ e1 / e2.

Note that our method may translate an expressione, of which
evaluation may not terminate, to another, terminating one, ife 6∈
nul ∧ ExtFIRST(e) = ∅. Since such possible non-termination
should be a bug in the grammar, we do not consider this as a flaw
in our method.

4.4 AC-Repetition

Similar to the problem described in the previous subsection, we will
give the condition to translate an expresssion containing repetition
e1∗ e2 to (!e2 ↑ e1)∗ e2 without changing its meaning, as follows:

e1 6∈ nul ∧ e2 6∈ nul ∧ disjoint(e1, e2).

We useExtFIRST to obtain the first terminal expressions ofe2.
UsingExtFIRST, an expressione1 ∗ e2 in which the above con-
dition holds can be translated to the following expression without
changing its meaning:

(!(ExtFIRST(e2)) ↑ e1) ∗ e2.

However, if there are no expressions following the repetition,
the translation is not applicable.

To resolve this problem and translate repetitione∗ at the tail
position, the followere2 of the last non-tail invoker ofe∗ must be
found. First, we define the relationInvoker as follows:

e1 ∈ Invoker(e) iff

e1 = e/e2

e1 = e2/e
e1 = e e2

e1 = e2 e
e1 = !e
e1 = e∗
e1 = e?
e1 = N(whereN is a nonterminal with a rule

N ← e).

The last line in the above means that theInvoker(e) for an ex-
pressione may have several elements. Then, we define the follow-
ing functionH such thatH(e) represents the follower expressions
of e (c indicates the child ofe andV indicates visited nontermi-
nals):

H(e) = J(e1, e, ∅) ∪ ...J(en, e, ∅)
J(e∗, c, V) = ∅
J(e?, c, V) = ∅
J(!e, c, V) = ∅
J(&e?, c, V) = ∅
J(e : " ", c, V) = J(e1, e, V) ∪ ... J(en, e, V)
J(e : [], c, V) = J(e1, e, V) ∪ ... J(en, e, V)
J(e : ., c, V) = J(e1, e, V) ∪ ... J(en, e, V)
J(e : N, c, V) (N ∈ V) = ∅
J(e : N, c, V) = J(e1, e, V ∪ {N})

∪... J(en, e, V ∪ {N})
J(e : ea eb, eb, V) = J(e1, e, V) ∪ ... J(en, e, V)
J(e : ea eb, ea, V) = {e1}
J(e : ea / eb, ea, V) = ∅
J(e : ea / eb, eb, V) = J(e1, e, V) ∪ ... J(en, e, V),

wheree1, ..., en ∈ Invoker(e).
For the expressione1∗ and the setX = H(e1∗), if size(X) =

1 and the following condition holds,

e1 6∈ nul ∧ e2 6∈ nul ∧
disjoint(e1, e2) (X = {e2})

then the expressione1∗ can be translated to:

(!(ExtFIRST(e2)) ↑ e1)∗; .
The relationInvoker and the functionH to find the follower

expressions ofe are similar to the relationLastss andFOLLOWs in
[18], respectively, but not the same as them.

For example,FOLLOWs(e) 6= H(e) where(e/e1) e2.
Additionally, we add the special translation rule to handle the

case thate2 =!. whereX = {e2}. This pattern appears frequently
in PEGs and the abovementioned translation rule cannot handle this
pattern. The translation rule enable that the expressione1∗ followed
by !. to be translated to(&(.) ↑ e1)∗.
4.5 Limitations

Because AC-FIRST and AC-Repetition, likeLL(1) parsing, per-
form lookahead of only one terminal expression, these algorithms
have limitation similar to it. That is, if the first terminal expressions
of a choice can be prefix of the first terminals of another choice,
these algorithms cannot insert a cut operator into the PEG. For ex-
ample, in the following PEG, a cut operator cannot be inserted after
":" because lookahead of arbitrary terminal expressions is needed.

A ← [a-z]+ ":" ... / [a-z]+ ";";

4.6 Compaction of Lookahead Expressions

Lookahead expressions generated by AC-FIRST and AC-Repetition
sometimes become quite large. For example, the VariableInitializer
rule in Java PEG

VariableInitializer ← ArrayInitializer
/ Expression;

is translated to the following rule using AC-FIRST:

VariableInitializer ← !(
[0-9] / [1-9] / [A-Z] / [_$] / [a-z]

/ "synchronized" / ...) ↑
ArrayInitializer/ Expression.

The right-hand side of the above rule is unnecessarily large
because the lookahead expression!([a-z] / "synchronized")
has the same meaning as!([a-z]). We implemented a method for
the compaction of a lookahead expression to solve this problem.

The key concept is that whene1 ≤ e2, we can safely replace
!(e1 / e2) or !(e2 / e1) with !(e1). Hence, ifei ≤ ej , ej can be
removed from the lookahead expression!(... / ei / ... / ej / ...).
In addition, ifej ≤ ei, ei is removed from it. Using this method,
we can compact the expression!([a-z] / "synchronized") to
!([a-z]).

4.7 Suppressing Excess Insertion of Cut Operators

Using our methods, unnecessarycut operators are occasionally
inserted. Specifically, inserting acut operator into an expression
that expresses only fixed-size strings is always unnecessary. An
expression that expresses only fixed-sized strings can be detected
using the following functionF :

F (e1 / e2, V) = F (e1, V) ∧ F (e2, V)
F (e1 e2, V) = F (e1, V) ∧ F (e2, V)
F (e∗, V) = false
F (e?, V) = false
F (&e, V) = F (e, V)
F (!e, V) = F (e, V)
F (N, V) if(N ∈ V) = false
F (N, V) = F (e, V ∪ {N}) whereN ← e
F (e) if(e ∈ T) = true.

The first line says thate1 / e2 expresses only fixed-size strings
if both e1 ande2 express only fixed-size strings. The other lines can
be interpreted in the same manner. Note thatV , which is the second
argument ofF , represents visited nonterminals.V is used to detect
a recursive expression. IfF (e) is true, it is wasteful to insertcut
operators intoe and such an insertion should be avoided.

5. Comparison with Related Work
In this section, we compare our methods with two related works.
One isRats![10], a packrat parser generator which generates Java
code. The other isMouse[19], a PEG parser generator which also
generates Java code.

Rats! implements several optimizations to improve execution
performance and memory efficiency. However, despite these opti-
mizations, parsers generated byRats!requireO(n) space in pars-
ing because of memoization. On the other hand, parsers generated
by Yappusing our methods can parse an input in mostly constant
space for memoization. Because our methods are orthogonal to
those optimizations exploited inRats!, we can combine the use of
our methods and the optimizations to improve the memory effi-
ciency. In fact, we could easily implementChunksoptimization in
Yapp. It should also be possible to implement our method inRats!.

Mouse is a PEG parser generator. Instead of memoizing all
intermediate results, parsers generated byMousehave a small,
fixed-size cache. Therefore,Mousedoes not requireO(n) space
for memoization. But at the same time,Mousedoes not guaran-
tee linear-time parsing. Our method requires only almost constant
space for memoization without sacrificing time linearity.

6. Evaluation
For the evaluation of our methods, First, we implemented our
methods as a modification of our parser generatorYapp. Yapp is
written in Java and generates packrat parsers in Java. Then, we
generated optimized parsers usingYapp. To evaluate our methods,
we compared the following parsers that don’t construct abstract
syntax trees (i.e. recognizers) in terms of heap size and execution
performance:

• AUTO: generated byYappfrom grammars in whichcutoperators
are insertedautomaticallyusing our methods.

Figure 4. Minimum heap size in parsing Java programs

• CUT: generated byYappfrom grammars in whichcut operators
are insertedmanually.

• NO-CUT: generated byYappfrom grammars in whichcut oper-
ators arenot inserted.

• RATS: generated byRats!1.14.3.

We used Java 1.4 PEG, JSON, and XML (subset) PEG as ex-
amples of grammars. Java is selected as a widely used program-
ming languages. And JSON and XML is selected as widely used
languages which sizes could be large in practice. We created Java
1.4 PEG2 from a Parsing Expression Grammar for Java 1.5[16],
XML PEG from the EBNF definition in Extensible Markup Lan-
guage (XML)1.0 (Fourth Edition)[5], and JSON PEG from the
grammar on Annex A.8 of ECMA-262 (Fifth Edition) [11]. We se-
lected 9 files with size greater than 100 KiB as inputs to the Java
1.4 parsers from Java programs generated from the repository of
JavaCC grammars[3], and 38 files as inputs to the XML parsers,
each having a size less than 2 MiB, from IJS-ELAN corpus Version
2.0[7]. And we selected 38 files that we translated the IJS-ELAN
corpus XML files to JSON files using JSON in Java library[2] as
inputs to the JSON parsers.

All evaluations are performed on Intel Core2 Duo 2.4GHz with
2GB RAM running JDK 1.6.0 (client VM) on Windows XP Pro-
fessional.

6.1 Heap Size

To measure the heap size used in parsing inputs, we used the-Xms
command line option, which sets the initial Java heap size, and the
-Xmx command line option, which sets the maximum Java heap
size. We carried out a binary search to determine the minimum
heap size for which the parser can parse an input file without
OutOfMemoryError. The results are shown in figure 4, 5, and 6.

Figure 4 and 6 show thatAUTO andCUT can parse Java programs
and JSON texts in mostly constant space regardless of the input
size, in contrast toNO-CUT andRATS. The slight increase of heap
sizes ofAUTO andCUT in Java when the file size is 644 KiB is that
there exists one large Java statement in the file andcutoperators are
not sufficiently inserted for such a statement. We can say that our
methods are effective for the Java PEG and the JSON PEG from
the result.

But in figure 5,AUTO exhibits almost the same memory con-
sumption asNO-CUT and performs differently fromCUT. An obser-
vation of the XML PEG suggests that there exists somecut oper-

2 We used Java1.4 parser distributed withRats! for RATS, because the
grammar may be optimized forRats!.

Figure 5. Minimum heap size in parsing XML files

Figure 6. Minimum heap size in parsing JSON files

ator instances which cannot be inserted automatically but can be
inserted manually for the reason described in section 4.5.

6.2 Speed

To measure how the speeds of the parsers change with the heap size,
we again used the-Xmsand-Xms. We measured the time in which
parsers parse all input files successfully, repeated the evaluation 20
times, and selected the median as a result. The results are shown in
figure 7, 8, and 9.

Figure 7 and 9 show that the speeds ofAUTO andCUT in pars-
ing Java programs and JSON texts are improved significantly as
compared toNO-CUT. AUTO performs almost as good asCUT. That
is, our methods do a fairly good job as compared to the manual
insertion ofcut operators.

In addition, figure 7 indicates that in JavaAUTO and CUT are
faster thanRATS in a small heap size and figure 9 indicates that in
JSONAUTO andCUT are far more faster thanRATS. Supposedly,
this result is due to a decrease in time for garbage collections.
Unfortunately, as shown in figure 8,AUTO performes mostly the
same asNO-CUT for XML for the same reason as the case of figure
5.

7. Conclusions
We proposed methods for automatic insertion ofcut operators
into a PEG. Using our methods, we can generate packrat parsers
that require only almost constant space for memoization without

Figure 7. Speed for parsing Java programs. 0 on the y-axis indi-
cates that the parser could not parse all inputs successfully.

Figure 8. Speed for parsing XML files.

Figure 9. Speed for parsing JSON files.

manual rewriting of the grammar. Packrat parsers are considered
unsuitable for parsing large inputs. However, using our methods,
packrat parsers can handle large files practically. This is the main
contribution of our study. Experimental evaluations suggest that
our methods are effective for a Java PEG and a JSON PEG but
are unfortunately ineffective for an XML PEG. We believe that this
problem can be solved by some extensions to our methods (e.g.
increasing the number of lookahead nonterminal expressions like
LL(k)). We intend to address the problem in future work.

Acknowledgments
We wish to thank the anonymous reviewers for their helpful com-
ments.

References
[1] javacc: JavaCC Home, . https://javacc.dev.java.net/.

[2] JSON in Java. http://www.json.org/java/.

[3] A repository of JavaCC grammars, . https://javacc.dev.java.net/
servlets/ProjectDocumentList?folderID=110.

[4] R. Becket and Z. Somogyi. Dcgs + memoing = packrat parsing but is
it worth it? In Practical Aspects of Declarative Languages, January
2008.

[5] T. Bray, J. Paoli, and C. Sperberg-McQueen.Extensible Markup
Language (XML) 1.0 (Fourth Edition),
W3C Recommendation, August 2006.

[6] A. Colmerauer and P. Roussel. The birth of prolog. InThe second
ACM SIGPLAN conference on History of programming languages,
pages 37–52. ACM Press, 1993.

[7] T. Erjavec. The ijs-elan slovene-english parallel corpus.International
Journal of Corpus Linguistics, 7(1):1–20, 2002.

[8] B. Ford. Packrat parsing: Simple, powerful, lazy, linear time. In
Proceedings of the 2002 International Conference on Functional
Programming, October 2002.

[9] B. Ford. Parsing expression grammars: A recognition-based syntactic
foundation. InSymposium on Principles of Programming Languages,
January 2004.

[10] R. Grimm. Better extensibility through modular syntax. In
Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation, pages 19–28, 2006.

[11] E. C. M. A. International. ECMA-262: ECMAScript Language
Specification. ECMA (European Association for Standardizing
Information and Communication Systems), fifth edition, December
2009.

[12] S. Johnson. Yacc: Yet another compiler compiler. InUNIX
Programmer’s Manual, pages 353–387. Holt, Rinehart, and Winston,
New York, NY, USA, 1979.

[13] K. Mizushima, A. Maeda, and Y. Yamaguchi. Improvement technique
of memory efficiency of packrat parsing. InIPSJ Transaction on
Programming Vol.49 No. SIG 1(PRO 35) (in Japanese), pages 117–
126, 2008.

[14] I. S. Organization.Syntactic metalanguage – Extended BNF, 1996.
ISO/IEC 14977.

[15] T. J. Parr and R. W. Quong. Antlr: A predicated-ll(k) parser generator.
Software Practice and Experience, 25:789–810, 1994.

[16] R. Redziejowski.Parsing Expression Grammar for Java 1.5.
http://www.romanredz.se/papers/PEG.Java.1.5.txt.

[17] R. Redziejowski. Some aspects of parsing expression grammar. In
Fundamenta Informaticae 85, 1-4, pages 441–454, 2008.

[18] R. Redziejowski. Applying classical concepts to parsing expression
grammar. InFundamenta Informaticae 93, 1-3, pages 325–336, 2009.

[19] R. Redziejowski. Mouse: from parsing expressions to a practical
parser. InConcurrency Specification and Programming Workshop,
September 2009.

